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Some strategies for calculating the effects of chemical reactions in large, multidimensional
finite-difference computer codes require the equilibrium gas composition as an input. Because
the equilibrium problem must be solved a large number of times, it is essential that the
equilibrium solver be fast and reliable. An existing solver is a variant of the Gauss—Seidel
technique, and its performance can be predicted and quantified. It is relatively fast, but can be
unreliable. By contrast, Newton’s method is slower but more reliable. A hierarchical
algorithm, in which recourse is made to Newton’s method if Gauss—Seidel iteration fails, is
shown to combine the speed of Gauss-Seidel and the reliability of Newton. The hierarchical
solver has been incorporated into the CONCHAS computer code. The reliability of the code
is improved, and there is a decrease in the amount of computer time required. The new
algorithm has not failed during production runs of CONCHAS, but it has failed to find the
solution of-some special test problems.  © 1985 Academic Press, Inc.

1. INTRODUCTION

For calculations of chemically reactive fluid flow it is often advantageous to
classify chemical reactions as “fast” or “slow,” and then to consider the fast reac-
tions to be in chemical equilibrium. This concept of “partial equilibrium flow,”
described by Ramshaw [1], allows a realistic treatment of post-flame conditions
during calculations of engine combustion. Such calculations would be impractical if
the post-flame chemistry were to be calculated using kinetic mechanisms, but are
practical if fast equilibrium solvers can be used.

Another approach which requires a fast equilibrium solver is that of Reitz and
Bracco {2, 3]. They have introduced a “global local equilibrium kinetics model” for
flows involving combustion, in which a global reaction rate is used to determine the
rate at which chemical equilibrium is attained. This approach is fundamentally dif-
ferent from partial equilibrium, but also requires the local equilibrium composition
as an input.

In this paper we discuss the problem of finding the equilibrium composition of a
mixture of gases, mainly from the point of view of multidimensional calculations of
combustion in engines and the CONCHAS family of computer codes [4, 5].
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The primary requirement of an equilibrium solver in a large finite-difference code
is that it be fast. A typical run of CONCHAS requires the equilibrium problem to
be solved about a million times. Typically, the speed of an algorithm in solving a
single problem is measured in milliseconds. Each extra millisecond required by the
solver will translate into about 17 additional min of computer CPU time.

There are various computer codes available for calculating the equilibrium com-
position of a mixture of species, the best known being the NASA code [6]. Olikara
and Borman [7] developed a code primarily for zero-dimensional (ther-
modynamic) models with hydrocarbon combustion. However, these codes are too
slow to be used for the CONCHAS equilibrium calculation. They also do not
exploit the special structure of the CONCHAS problem, which, in particular,
involves a reduced-order system of equations and, generally, good initial solution
estimates.

Ramshaw and Cloutman [8] developed the equilibrium solver in the original
version of the CONCHAS code. They found the solver to converge quickly and to
be more effective than Newton iteration. However, under certain conditions, their
algorithm fails because it converges extremely slowly. (“Failure” is defined as the
inability to reach a solution within a specified number of iterations.) In this paper
the reasons for this failure are identified and it is shown that a hierarchical solver,
in which recourse is made to Newton’s method if the original algorithm fails, runs
about as fast as the original and is more reliable.

2. FORMULATION

The equilibrium composition must be found for each cell at each time step. We
accept the following: The equilibrium calculation for each computational cell is
independent from that of its neighbors and may be treated in isolation, and for each
cell the equilibrium composition is to be found for a constant-volume system of
specified temperature and mass. (These conditions are not assumptions, but con-
sequences of the solution method used for the overall governing equations [1, 8].)

In general, if there are N distinct chemical species composed of M chemical
elements, then the algebraic system to be solved consists of N— M nonlinear
equilibrium equations and M linear element-conservation relations.

If X represents a mole of any species, the equilibrium reactions are of the form

Zakst:Zbkst (1)
k k

where k=1,.,N, s=1,.,N—M and a, and b, are the dimensionless
stoichiometric coefficients. The equilibrium reactions lead to algebraic relations of
the form

K., R,=P, (2)
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where the products

R,=[[[ee]™ and  P,=[][ec]™ (3)
k k

are respectively associated with the “reactants” (left-hand side) and the “products”
(right-hand side) of Eq. (1). In the above equations K| is the equilibrium constant
for reaction s, while ¢, is the molar concentration of species k. Finally, if we adopt
the index v for the chemical elements, then the linear element-conservation reac-
tions are of the form

Y dici=C, (v=1,., M) (4)
k

Information on element conservation is, however also contained in the equilibrium
reactions themselves. For example, the reaction 2 OH 2 O, + H, implies: “Two
moles of OH can be interchanged with one mole of O, and one of H, without
violating atom conservation.”

This fact allows us to construct iterative methods for solving the equilibrium
problem which explicitly involve only the N — M nonlinear relations, Egs. (2). In
the above example, a change of 60, =¢ in the O, concentration should be accom-
panied by changes of 6H,=¢ and §OH = —2¢ in the H, and OH concentrations,
respectively. In the general notation, this may be written as

(5ck)s=(bks_aks) . (5)

Of course, a reduced system can be obtained by substituting the linear equations
directly into the nonlinear. It can be shown that the following algebraic systems are
mathematically equivalent:

o The full Nx N system, Egs. (2) and (4).

o The (reduced) (N — M) x (N — M) system of Eq. (2), complemented by the
correction constraints of Eq. (5).

+ A reduced system obtained by substituting the M linear relations, Eq. (4),
into the nonlinear, Eq. (2), ie, an (N — M) x (N — M) system.

Two principal methods will be considered below to solve the equilibrium
problem: Newton’s method and the Gauss—Seidel method [9]. As will be observed,
the original method of solution is a Gauss—Seidel variant. It can also be shown that:

» Newton’s method applied to any of the formulations will give exactly the
same sequence of iterates.

o The Gauss—Seidel method applied to either of the reduced (N— M)x
(N — M) formulations will result in exactly the same sequence of iterates.

Consequently, we have the option of applying either iterative technique to a system
of N — M equations rather than the larger equivalent N x N system.
Now let us observe that there are three issues connected with using any local
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method of solution. (A “local” method is one which requires an initial guess and
which will converge to a particular solution when the initial guess is sufficiently
close to that solution.)

« Will it converge?
+ How fast will it converge?
o How are the initial guesses to be chosen?

These questions are not independent. For exampile, the choice of initial guess may
affect the speed of convergence. Also note that very slow convergence is, for prac-
tical purposes, the same as non-convergence.

In this connection, it is important to distinguish the Jocal and the global charac-
teristics of a solution method. The local convergence rate, when a method is close
to and converging to a solution, is independent of the initial values and can often
be quantified. Little can be said (mathematically) about global convergence—
whether a given set of initial values will converge to a particular solution, or the
number of iterations needed for convergence. However, a poor rate of local con-
vergence obviates considerations of global behavior. It is possible to affect global
behavior within an algorithm, for example, by restricting the iterates to be positive
when the solution is known to be positive. In practice, however, the problem of
global convergence is addressed most directly by seeking to provide good initial
solution estimates.

Newton’s method is commonly used to solve systems of algebraic equations. Its
convergence characteristics are generally better than those of the Gauss-Seidel
method, in that it tends to be more reliable and takes fewer iterations. However, the
Gauss-Seidel method has one possible advantage over Newton’s method—the
speed of a single iteration. That is, if both methods are equally reliable (in a par-
ticular setting) and both methods take a comparable number of iterations, then the
Gauss—Seidel method will be faster. This is particularly significant for very large
systems, say, systems with hundreds of variables.

We now concentrate on methods for solving the reduced system of N—M
equations. A particular iterative solution method is characterized by the way in
which the corrections (the ¢ of Eq. (5)) are evaluated and applied to the individual
species.

The Gauss-Seidel method considers each equation (reaction) in isolation from
the others. Gauss—Seidel variants are distinguished by the manner in which the
individual equations are solved. For example, in the one-step Gauss—Seidel-Newton
method, each equation in turn is updated by a single Newton iterate. Specifically, if
Eq. (2) is not satisfied for some s, we may write it as

Es{ck}szRs{Ck}_Px{Ck} (6)
and seek a correction g, to drive E, to zero. Then

Efci+0ck}=Efc,}+ [(OE/Oc) bci]+ (7)
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or, setting the updated value of E,=0 and truncating the series,

0= Es{ck} + Z L(OE/dci) (b — ar,)] &;. (8)

This equation is to be solved for &, yielding a Newton iteration on the single
equation being considered. The species concentrations are updated according to
Eq. (5), after which a correction is found for the next equation, and so on.

A full Newton’s method for the system is obtained by solving the matrix equation

J-e+E{c,}=0 (9)

for the vector of corrections, €. J is the Jacobian matrix, whose element in the sth
row and nth column is given by

anzz [(aEs/ack)(bkn-akn)]' (10)
k

3. THE GAUSS-SEIDEL METHOD

The algorithm of Ramshaw and Cloutman [8] solves each equation sequentially
and is thus a Gauss-Seidel variant. The novel feature of this method is a quadratic
evaluation of the correction, ¢, to be applied to each equation. To first order the
correction is a single Newton iteration, and when ¢ is small, i.e., the method is close
to a solution, the quadratic aspect can be expected to be less important. Indeed, we
have found that the details of the quadratic evaluation do not materially affect the
local convergence rate of the method. (The original paper [8] and subsequent
publications do not observe that that algorithm is a Gauss-Seidel variant.)

The basic Gauss—Seidel method and some of its variants have, in fact, been
carefully studied, and its local behavior is well understood (see Ortega and
Rheinholdt {91). In particular, there is a theorem that predicts the local con-
vergence rate of the method. The essential details are summarized below.

Let f(x) =0 denote a system of n equations

fi(xla“'a xn) = 0

in 7 unknowns, for i = 1,..., n. The Gauss-Seidel method begins at an “initial guess,’
x®, for a solution to f=0 and then improves the guess iteratively with x®, x®,
being better and better estimates.

A Gauss—Seidel iteration is in two steps:

1

» Step 1. Solve for x;:

S xR D x x®) L x(9)=0. (11)

Step 2. Set x(*+V=x,.
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Note that in solving the one-variable problem in Step 1 of each iteration, we will
generally have to choose one solution out of several solutions to the polynomial,
Eq. (11). Usually, one chooses the closest solution to x{*,

Let J(x) denote the Jacobian matrix. We can write this matrix as a sum of parts
as

Jx)=D-L-U (12)

where D is the diagonal, —L the lower triangle, and ~ U the upper triangle of the
Jacobian. Assume that D has no zero entries, and define

H=(D-L)"'U. (13)

We will be interested in the spectral radius of this matrix (i.e., the maximum of the
absolute values of the eigenvalues) evaluated at a point x, denoted p=p{H(x)}.
Now we have this result, which is an immediate corollary to the nonlinear SOR
theorem [9, p. 3267]:

THEOREM. If x* is a solution to f(x)=0 and p{H(x*)} <1, then, for initial
guesses close enough to x*, the Gauss—-Seidel method converges to x*.

Further, for any 6 >0 with p + 6 > 1 and each initial point X in the region of con-
vergence around x*, there is a k°=x°(x'Y, ¢) such that

Ix®) —x* < (p+0o)  fork=k°, (14)

where x*) denotes the xth Gauss—Seidel iterate beginning at x'®. The number p is the
smallest positive number with this property.

For Gauss—Seidel iteration, the theorem identifies the spectral radius of the H
matrix as controlling the behavior of the algorithm, The equality of Eq. (14) holds
for the worst choices of x¥. Other values of x‘© will give faster convergence, and
the theorem implies that ¢ can be arbitrarily small if x° is sufficiently large. Then
—1/log(p) is an upper bound on the number of iterations required to gain an
additional significant digit in the solution, once the solution estimates are in the
region of convergence (cf. [10, p. 64]). The theorem does not indicate how to find
an initial guess, but focuses on the local behavior of the algorithm when it is close
to, and converging to, a solution.

As stated above, the theorem implies that the one-variable system, Eq. (11), is to
be solved exactly. The theorem holds, essentially unchanged, for an m-step
Gauss-Seidel-Newton method in which the (exact) solution of Eq. (11) is replaced
by m Newton iterates [9, p. 327].

The fact that (with m = 1) taking one step of Newton’s method is just as good as
solving Eq. (11) exactly suggests that there is no need to solve each individual
equation very accurately. The Gauss-Seidel aspect, that of solving individual
equations sequentially, dominates the rate of convergence.

The actual algorithm used in CONCHAS differs from the standard one-step
Gauss—Seidel-Newton method in two ways:
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« It does not allow any iterate to go negative.
» It uses a quadratic evaluation of the correction &.

The first modification is motivated by the desire to find the correct, physical
solution in which all the concentrations are positive. It can be regarded as a way of
getting a better intitial guess to restart the method, and has no effect on the local
convergence rate.

The “quadratic” evaluation of the correction is also based on the global infor-
mation that the physically meaningful solution must be positive, and not on the
continuation of the series expansion of Eq. (7). The variants of the theorem noted
above suggest that this modification does not materially change the local con-
vergence characteristics of the method. Indeed, we have found that these
modifications affect the global and not the local behavior of the method.

The theorem has a number of important implications for the Gauss-Seidel
method and its variants.

« High-order accuracy in solving the one-variable problem is not important
in determining the local convergence rate.

» The limiting convergence rate is always linear, i.e., the ratio of the error on
two successive iterations is a constant. (By contrast, Newton’s method generally
converges quadratically, ie., the error follows the sequence 107!, 1072, 1074
1073,..., and, if the accuracy requirement is stringent enough, the Newton method
will converge faster than the Gauss—Seidel method).

« The rate of convergence is affected by the order in which the equations are
solved, since this order affects the decomposition of the Jacobian, Eq. (12).

+ The rate of convergence is affected by the choice of equilibrium reactions,
since different choices of reactions will result in different Jacobians.

4. APPLICATION-~-HYDROCARBON COMBUSTION

As formulated in the standard CONCHAS codes, the partial equilibrium concept
requires the calculation of the equilibrium composition of the ten species shown in
Table I. (The fuel, subscript 1, does not enter into the equilibrium problem.)

The equilibrium reactions should be written to represent the formation of
chemical compounds from elements in their standard states [11]. This ensures an
independent set of equations. (However, non-standard reactions, formed by linear
combinations of the standard reactions, may be used as input to a particular
algorithm.) We choose CO as a standard state, since C (graphite) is not included in
the calculation. The equilibrium relations (cf., Eq. (2)) and the corresponding non-
linear algebraic equations (Eq. (3)) are given in Table II as (a)—(f).

Ramshaw and Cloutman found their algorithm to converge faster when reaction
(f) was replaced by (f'), which is a combination of (¢) and ().
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TABLEI
Species Considered

Subscript Species
2 0, Molecular oxygen
3 N, Molecular nitrogen
4 CO, Carbon dioxide
N H,O Water vapor
6 H Atomic hydrogen
7 H, Molecular hydrogen
8 (0] Atomic oxygen
9 N Atomic nitrogen
10 OH Hydroxyl radical
11 CO Carbon monoxide
The element-conservation equations
Co=2cy+2c4+cs+cg+ey+cy (g)
Cu=2cs+ce+2c,+cy (h)
CC =04 +c 11 (1)
Cn=2c3+¢ 0)

are not explicitly used.

The solutions to the equilibrium problem are best expressed in terms of three
physical variables: the temperature T, the pressure p (at the solution), and the
equivalence ratio @. The pressure, which reflects the total system density (mass per
unit volume), is given by

p=2 (cc AT) (15)
k
where # = 8.4143 x 10" g cm?/(g-mole s> K) is the universal gas constant. The units

TABLE II

Equilibrium Expressions

N, 22N Kic3=(c5) (a)
0,220 Kycr = (cy)’ (b)
2C0,22C0+0, Ks(cq)? = coleyy)? (c)
H,22H Kicr=(cq)? (d)
20HZ2 0O,+H, Ks(co)? =csc, (e)
2H,0 2 2H,+0, Keles)r=(c7)? ¢ (N

2H,0+0,240H Ki(cs) ¢z =(cpo)? ()




CHEMICAL EQUILIBRIUM ALGORITHMS 227

of pressure are dyn/cm? (1 Pa= 10 dyn/cm?), and the concentrations are expressed
in g-mole/cm’. The molar fuel-air equivalence ratio

®=(4Cc+ Cy)/(2Co) (16)

expresses the relative amounts of fuel (which contains carbon and hydrogen, con-
tributing to the numerator) and air (containing oxygen and contributing to the
denominator) present.

In running the CONCHAS code, we had found that the equilibrium calculation
would, under certain circumstances, fail to converge. This generally occurred for
fuel-rich combustion (@ > 1), and during the expansion stroke as the temperature
decreased. The reactions used where (a) through (e) and (f’) of Table II.

To verify the results of the theorem and to identify why the original algorithm
was failing, a set of some 500 problems was generated during a run of CONCHAS.
Since the code generally provides a good initial estimate of the solution, these
problems were readily solved (to machine accuracy) by Newton iteration. With the
solution known, the spectral radius of the matrix H, Eq. (13), could be found and
the error behavior of the Gauss—Seidel algorithm could be monitored.

The results are shown in Fig. 1. The “actual eigenvaiue” was calculated from the
Jacobian of the system evaluated at the solution and represents the prediction of
the theorem, while the “computed eigenvalue” was obtained from the observed rate
of convergence through Eq.(14) and reflects the measured performance of the
method. Tt is clear that the variant of Gauss—Seidel used in CONCHAS behaves as
predicted by the theorem.

These computations also reveal the conditions under which the Gauss-Seidel
algorithm fails. Figure 2 shows that, for the problems considered, the eigenvalue is
close to unity and convergence is extremely slow when the equivalence ratio @ > 1.

To ascertain the effect of the quadratic feature of the method of [8], these com-
putations were repeated using a one-step Gauss—Seidel-Newton method. The local
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convergence rates of the Gauss-Seidel-Newton method and the quadratic method
were essentially the same, confirming the expectation that the quadratic feature
does not affect the local behavior of the CONCHAS algorithm. The quadratic
method succeeded in solving some problems on which the one-step
Gauss-Seidel-Newton method failed, indicating better global behavior. No attempt
was made to improve the global performance of the Gauss—Seidel-Newton method.

The theorem was then used to predict the performance of the Gauss—Seidel
methods over the range of variation of the physical variables affecting the problem.
The spectral radius is relatively insensitive to both the pressure and the hydrogen-
to-carbon ratio of the fuel, and is affected mainly by the temperature and the
equivalence ratio. The influence of these latter variables is shown in Fig. 3.

The correspondence of the predictions of the theorem and the observed behavior of
the Gauss—Seidel method indicate that the algorithm was failing in the CONCHAS
code primarily because of poor local convergence and not for global reasons such as
poor start points. The initial estimate used in CONCHAS (which is a perturbation
of the previous solution) is usually good.
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5. SELECTION OF THE EQUILIBRIUM REACTIONS

The theorem effectively predicts the local performance of the Gauss—Seidel
methods and provides a means to ascertain the effect of different choices of
equilibrium reactions on the local convergence rate. This was done for the present
problem of hydrocarbon combustion, and the results are briefly described below.
Unfortunately, this effort did not lead to general guidelines which would facilitate
an a priori choice of reactions to be used.

The speed of convergence of the Gauss—Seidel method is determined by the spec-
tral radius of H, Eq. (13). This spectral radius can be changed in two ways:

« By altering the order in which the equations are solved.
« By changing the equations through algebraic manipulations.

Both strategies were used by Ramshaw and Cloutman to make the algorithm work
better; indeed, we found that, at least for @ < 1, the spectral radius when reaction
(f') is used is smaller than that for reaction (f).

A set of solutions was generated for a range of temperature, pressure, and
equivalence ratio. The Jacobian and its spectral radius were then calculated for dif-
ferent sets of equilibrium reactions. No system of equations could be found for
which the Gauss—Seidel method would work “well” over the entire range of
equivalence ratio and temperature, and we have accordingly used the same reac-
tions as in [8] for all our computations.

Although one can make some intuitive observations about why the Gauss-Seidel
method fails, there seems to be no systematic way of choosing the reactions for
optimal performance. Obviously, one goal might be to make the Jacobian
“diagonally dominant,” or to reduce the coupling between the reactions. It is,
however, difficult to analyze the effect of different reactions on the off-diagonal
terms. Even when the spectral radius of H is small, the Jacobian is not necessarily
diagonally dominant, and the reactions are not decoupled in any obvious way.

Changing the order in which the equations are solved is equivalent to row and
column interchanges of the Jacobian. When this was done, the spectral radius was
found to be less affected than by changing the reactions.

Thus, the theorem provides a way to predict the performance of the Gauss—Seidel
methods with a particular set of equilibrium reactions. However, there is no way to
identify a priori an “optimum” set of reactions. Since the performance is greatly
affected by the reactions used, any description of the Gauss—Seidel method (or
variants thereof) is incomplete without details of the reaction set used and the order
in which the equations are solved.

An interesting fact is that in none of the cases analyzed was the Gauss-Seidel
method divergent; the spectral radius found from the Jacobian at the solution was
always less than (but often very close to) unity. Thus the method was observed to
always be locally convergent.

Computational tests of the quadratic method [8] showed a similar behavior

581/60/2-5
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(although these tests include the effect of the global modifications). The error tends
always to decrease, and the final result is “closer” to the solution than the initial
guess even when the method has failed by not satisfying an error criterion after a
hundred iterations. At each iteration the solution is physical, i.e., all the concen-
trations are positive. Therefore, when the method “fails” by not satisfying an
accuracy condition after a hundred iterations, the solution is inaccurate but may be
physically reasonable. Failure of the equilibrium calculation does not cause an
obvious “failure” of CONCHAS but does introduce inaccuracies in the overall com-
putation. By improving the reliability of the equilibrium solver (by reducing
failures) we improve the reliability of CONCHAS in the sense that the overall com-
puted results then conform more closely to the physical assumptions made in the
code.

6. A MORE RELIABLE “HIERARCHICAL” SOLUTION METHOD

The speed of the Gauss—Seidel method is an advantage which is difficult to dis-
regard. Newton’s method is more reliable, but requires more computational effort.
We will show that a hierarchy, in which Newton is used to “back up” Gauss—Seidel,
combines the desirable features of both methods.

To compare the methods, a set of 1000 problems was used. These were construc-
ted by using a random number generator to select values of the temperature
(1300 < T<3500K), pressure (10°<p<5x10°Pa) and equivalence ratio
(0.2 < ? <2.3) for each problem. The “distance,” u, of a point ¢ from the solution

¢* is defined by
c—c*
,u=| @ | where [¢] =/ (c)*. (17)

k

For the 1000 problems the initial guesses were all in the range 0.02 < 2 <0.10. This
set of problems both covers the range of physical conditions encountered in
calculations of engine combustion and simulates the type of problem encountered
in CONCHAS with respect to the accuracy of the initial values. The problems were
not screened in any way based on the performance of a particular method.

The linear system of equations to be solved for the vector of corrections in New-
ton’s method has already been given, Eq. (9). We used a standar subroutine,
LEQT2F, from the IMSL Library [12] to do this. “Failure” of the Newton
iteration is indicated by an increase in the error norm. This is a very stringent
requirement, demanding essentially a monotonic decrease in the error norm as the
solution is approached. We did not investigate the reasons for failure in detail or
attempt to restart the method with a better initial guess. However, the failures do
not correlate with any physical variable (temperature, pressure, or equivalence
ratio), and there is no region encompassing particular values of the physical
variables in which Newton’s method will tend to fail more often.

With respect to the discussion of the previous section, Newton’s method does not
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depend at all on the order in which the equations are written, and we found that it
is insensitive to the reactions used; it converges as quickly with either of the reac-
tions (f) or (f').

Computational tests of the original Gauss-Seidel algorithm and Newton’s
method showed the following:

o Gauss—Seidel is faster than Newton when it succeeds (usually for @ < 1). In
fact, the original algorithm was timed at 0.75 ms per iteration, while Newton takes
7.3 ms/iteration, about 10 times longer. (These timings are for an IBM 370/3033.)

« Newton’s method is more reliable than the Gauss—Seidel method, since it
fails less often.

The speed of the Gauss--Seidel method and the reliability of Newton’s method can
be combined when a hierarchy is used: If the Gauss—Seidel method fails, recourse is
made to Newton’s method, with the Newton method using the final Gauss—Seidel
result as a starting point.

The three methods were compared on the test set of 1000 problems and the
results are shown in Table III. (Recall that a single Newton iteration is roughly
equivalent to ten Gauss—Seidel iterations.)

With respect to the original algorithm and Newton’s method, Table III shows the
following:

« Increasing the accuracy requirement results in a large increase in the num-
ber of iterations required by the Gauss-Seidel method and also increases the num-
ber of failures. This is because the method is linearly convergent (see Eq. (14)).
Newton’s method is quadratically convergent and requires fewer additional
iterations for increased accuracy.

o Newton’s method is more reliable than the Gauss—Seidel method.

« Both methods take longer, on average, to fail than they do to find a
solution.

The iteration data presented in Table III for the hierarchy concern only that sub-
set of the 1000 problems which the Gauss-Seidel method failed to solve. For exam-
ple, when p <1077 the second level of the hierarchy solved (938 — 538) =400
problems. These 400 problems required an average 2.60 Newton iterations, in
addition to the 100 iterations for the Gauss-Seidel method to fail. There were
1000 — 938 = 62 problems which the hierarchy failed to solve. Note that a failure of
the hierarchy requires about 20 times the computational effort of a successful
Gauss—Seidel solution.

These 62 failures are not an indication of the reliability of the hierarchy in prac-
tice, as will be discussed below. The important observation is that more stringent
accuracy requirements cause only a small increase in the number of times the
hierarchy fails; however, the second-level Newton method is used more often as the
number of first-level Gauss—Seidel failures increases. The hierarchy is the most
reliable of the three methods.
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The error criterion in the original CONCHAS code is approximately
u<2x1072 This relatively weak condition, which ensures only two digits of
accuracy, is predicated by the poor convergence characteristics of the Gauss-Seidel
method and cannot be strengthened without causing the method to fail more often.
The hierarchy allows a more stringent error criterion without a loss of reliability,
but there is an increase in execution time since the Newton backup is used more
often.

In actual runs of CONCHAS the hierarchy performs more reliably than the
results of Table IIl indicate. In fact, with failure of the Gauss—Seidel method
signalled after 100 iterations, the hierarchy has never failed during production runs
of the code. In addition, there is a synergistic effect in that while previously the
Gauss-Seidel method would fail on as many as 40% of the problems, we now find
that the backup Newton method is used relatively little. The reason is that
previously a single failure would trigger a sequence of failures for a particular cell,
but now Newton “fixes” the solution for that cell and eliminates succeeding failures.
The result is that for @ > 1, when the original method tends to fail, the new code
runs faster. This improvement is a result of the increased reliability and is not due
to any change in the intrinsic speed of the equilibrium solver.

7. CLOSURE

The equilibrium solvers we have considered here are attractive because of their
general nature. They are formulated for an arbitrary set of chemical equilibria and
can be coded generally to solve different chemical systems.

At least for the Gauss—Seidel method, this “generality” may be illusory. Great
care must be taken in choosing the equilibrium reactions for best performance of
the method, a procedure which is not systematic. However, the theorem discussed
earlier does provide a means to predict the performance for a particular choice of
reactions.

Newton’s method can be effectively used to back up the Gauss—Seidel method in
a hierarchy. In the CONCHAS code, for hydrocarbon combustion, this hierarchy
works well, at worst producing only isolated, non-catastrophic failures.

In using the hierarchy, a tradeoff must be made in determining “failure” of the
Gauss-Seidel iteration. We tended to use a relatively large number (100) of
iterations before invoking Newton for two reasons. First, the Gauss—Seidel method
was found always to converge, albeit sometimes very slowly. “Failure” can be regar-
ded as resulting in a less accurate solution and not as a catastrophic error. Second,
the Gauss-Seidel result is a better initial guess for Newton than the original
Gauss-Seidel start point. If the number of Gauss-Seidel iterations is reduced (say,
to 10), Newton is used more often but the “time to failure” of the Gauss-Seidel
method is reduced. Proper selection of the maximum number of Gauss-Seidel
iterations will minimize total computational time, but this selection is problem-
dependent. An additional problem-dependent factor to be considered is that the dif-



234 MEINTIJES AND MORGAN

ference in speed between the Gauss—Seidel and Newton methods depends on the
size of the system being solved (i.e., the number of species).

An alternative to the general methods described here is to carry out a preliminary
algebraic reduction of the equilibrium equations for the specific problem being con-
sidered. We have shown [13] that the hydrocarbon equilibrium system, Egs. (a—}),
can be reduced to a pair of cubic equations, to be solved using Newton’s method.
The resulting algorithm is intrinsically faster than any of the methods considered
here and is 100% reliable. The methodology used to obtain this two-equation
system is applicable to other equilibrium problems, so that although the method
does require preliminary algebraic manipulation of the equations, it should not
necessarily be considered less general.
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